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Surflex-Dock employs an empirically derived scoring function to rank putative protein-ligand interactions
by flexible docking of small molecules to proteins of known structure. The scoring function employed by
Surflex was developed purely on the basis ofpositiVedata, comprising noncovalent protein-ligand complexes
with known binding affinities. Consequently, scoring function terms for improper interactions received little
weight in parameter estimation, and an ad hoc scheme for avoiding protein-ligand interpenetration was
adopted. We present a generalized method for incorporating synthetically generatednegatiVe training data,
which allows for rigorous estimation of all scoring function parameters. Geometric docking accuracy remained
excellent under the new parametrization. In addition, a test of screening utility covering a diverse set of 29
proteins and corresponding ligand sets showed improved performance. Maximal enrichment of true ligands
over nonligands exceeded 20-fold in over 80% of cases, with enrichment of greater than 100-fold in over
50% of cases.

Introduction

Discovery of novel lead compounds through virtual screening
of chemical databases against protein structures is well estab-
lished,1 but there is still much room for improvement in key
aspects of algorithm performance. Many methods have been
published that vary primarily two components: scoring
functions2-8 and search methods9-15 (for a more complete
review, see Bissantz et al.16 and Jain17).

The primary criteria for evaluating docking strategies are
geometric docking accuracy, screening utility, scoring accuracy,
and speed. Geometric docking accuracy measures a docker’s
ability to generate and recognize the native conformation and
alignment (pose) of a ligand bound to its cognate protein
beginning from an arbitrary initial pose. This is typically
reported as the fraction of cases where the docker’s top-scoring
ligand pose is within 2.0 Å rmsd from the experimentally
determined binding geometry. Screening utility measures a
docker’s ability to rank cognate ligands of a protein above
random ligands, as is desired in typical virtual screening
applications. Methods for quantifying screening utility varies,
but most frequently it is characterized by constructing virtual
screening libraries that contain some small number of known
active molecules for a protein under study along with a large
number of randomly selected compounds typical of a screening
library. Following docking of a such a virtual library to a protein,
the resulting ranking of the ligands is used to compute the
observed true positive rates (percentage of known ligands found)
at various false positive rates (essentially the percentage of the
database that must be experimentally assayed, assuming a low
rate of “hits” in a screening library). Alternatively, screening
enrichment is reported, which is the ratio of the proportion of
true hits found to the expected proportion based on the
composition of the library, computed for a fixed small percent-

age of the top-ranked ligands of the screening library or reported
as a maximum value over all possible percentages of the ranked
library. Scoring accuracy is the degree to which a docker’s
quantitative scoring of ligand binding matches experimentally
determined values. This can be very important in focused
medicinal chemistry exercises, but the thrust of this paper is on
large-scale virtual screening, so the methodological evaluation
focused most strongly on screening utility. One important recent
trend in the docking literature has been the use of publicly
available benchmarks for assessing the performance of methods.
Rognan’s group has been at the forefront of this trend,16,18and
others have made use of the benchmarks developed there, both
for docking accuracy and for screening utility. In particular,
reports on Surflex19 and GLIDE13,20 have made direct use of
those benchmarks. In addition, reports of the performance of
GOLD have been very important in establishing benchmarks
of docking accuracy.11,21

The issue of docking accuracy has been extensively tested
by many groups, and the data sets are sufficiently large that
the reports of different groups largely agree as to performance
of the most widely used methods. The broadest recent study
directly compared eight methods: DOCK, FlexX, FRED, Glide,
GOLD, SLIDE, Surflex, and QXP.18 The four most successful
methods achieved very similar results, ranging from 50% to
55% success in returning top-ranked poses within 2.0 Å rmsd
of the experimental results: FlexX, GLIDE, GOLD, and Surflex.
Recent methods-focused reports on GOLD, Surflex, and GLIDE
contained benchmarking information on docking accuracy as
well, and these results largely agreed with the independent work
of Rognan’s group,19-21 suggesting comparable accuracy among
these methods. Additional details of these benchmark results
can be found in a recent review.17

With respect to screening utility, the situation is more
complex. First, there is a very limited set of publicly available
benchmarks (e.g., the two cases from Rognan’s group18). Recent
work by Perola et al.22 made use of proprietary data, and other
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recent reports have focused on single proteins23,24or small sets
of different proteins.13 Second, the performance of methods is
significantly more variable than for docking accuracy. While it
appears that the methods that perform best in terms of docking
accuracy generally outperform other methods with respect to
screening utility,18 there is still a multifold difference in
screening enrichment on the common benchmarks among the
different methods,13,17-19 The critical difference that distin-
guishes the successful methods listed above with respect to
docking accuracy from other methods is the use of empirically
derived scoring functions. Both GOLD and Glide make use of
modified versions of the ChemScore scoring function.4 FlexX
makes use of a function based on Bohm’s work,3 and Surflex
makes use of the Hammerhead9 scoring function.2

In the development of these scoring functions, onlypositiVe
data were used, encompassing protein-ligand complexes with
known binding affinities. One consequence of this choice is that
repulsive terms, which include effects such as improper steric
clashes, same charge atomic interactions, and desolvation
penalties, can receive little weight. This is because the training
ligands generally fit well within protein active sites, do not
typically make same charge close contacts, and do not bury
hydrophobic ligand surfaces against hydrophilic protein surfaces
(or vice versa). In this paper, we introduce the idea of employing
negatiVe data in training scoring functions for molecular
docking. By this we mean making use of putative nonbinding
ligands that do not fit a protein active site, make inappropriate
polar interactions, or violate aspects of protein-ligand comple-
mentarity that should result in desolvation penalties. There are
three obvious constraints that can be used in the context of
estimating parameters for a scoring function: (1) that the
computed scores for ligands of known geometry correspond
closely to the known affinities of the ligands, (2) that the
computed scores for the highest-scoring poses of nonligands
be poor relative to some value, and (3) that the computed scores
for geometrically incorrect dockings of ligands be poorer than
the score for poses that are very close to correct. The first
constraint is the typical use of positive training data, recently
made more robust by the availability of large numbers of such
complexes from databases such as PDBbind.25 The second
constraint carries with it two questions. What should be the
source of nonligands, and what should be the value of the bound
on score? The third constraint offers a direct method for tuning
scoring functions using protein-ligand complexes where the
binding affinity is not known. Where a particular scoring
function incorrectly identifies a ligand pose as scoring better
than the correct pose, a dynamic constraint can be computed to
penalize the incorrectly scored pose.

In this paper, we combined the first two types of constraints
to re-estimate parameters for the Surflex-Dock scoring function.
For the positive data, we employed the same 34 complexes used
originally in the parameter estimation (we did not make use of
larger, newer data sets in order to avoid complications with
testing the method). For the negative data, we screened a random
compound library against each of the proteins in the positive
data set and retained ligands that scored better than a prede-
termined value but that, on the basis of molecular similarity,
did not look at all like the native ligands of the proteins. In
employing the negative data, we imposed a penalty on the
objective function for parameter optimization if negative ligands
exceeded a fixed score.

We developed a large set of screening test cases, totaling 29
sets of proteins with associated true positives, which cover a
very diverse set of protein active sites and corresponding ligand

properties. The newly formulated scoring function obviated the
need for ad hoc treatment of improper clashes, and screening
enrichment remained the same or improved in21/29 cases.
Maximal enrichment of true ligands over nonligands exceeded
20-fold in over 80% of cases, with enrichment of greater than
100-fold in over 50% of cases. In the six cases of poorest
performance by the new scoring function, use of multiple protein
conformations exhibited promise in improving screening enrich-
ment. We also established that docking accuracy was essentially
unchanged with the new scoring function using a set of 81
protein-ligand complexes.

By simply adding automatically generated negative data to
the training of the Surflex-Dock scoring function, we were able
to estimate parameters that previously received so little weight
that ad hoc terms were required to make use of the function in
docking. The new scoring function yielded excellent perfor-
mance over a wide variety of test cases, both in terms of docking
accuracy and in terms of screening utility, without requiring
knowledge-based postprocessing of docking scores to incorpo-
rate interpenetration values. Further generalization of this
approach to estimate additional parameters (e.g., involving
desolvation effects), with the inclusion of more positiveand
negative data, should yield more complex scoring functions for
molecular docking with substantially improved performance.

Surflex-Dock is available free of charge to academic re-
searchers for noncommercial use (see http://www.jainlab.org/
downloads.html for details on obtaining the software). The data
sets used for benchmarking in this paper are freely available to
all researchers via the same Web site.

Methods

The focus of the paper is on improving the treatment of the
repulsive terms of the Surflex-Dock scoring function. We will
briefly review the scoring function, since additional details are
presented elsewhere.2 We employed multiple sources of data
to construct test cases for screening enrichment, and we
employed our previous benchmark of 81 complexes to assess
docking accuracy. The following reviews the scoring function,
the data sets and preparation, the optimization procedure for
retuning the scoring function, and the procedures for assessment
of performance.

Scoring Function.The Surflex-Dock scoring function (orig-
inally used within Hammerhead9) was tuned to predict the
binding affinities of 34 protein-ligand complexes, with its
output being represented in units of-log(Kd).2 The range of
ligand potencies in the training set ranged from 10-3 to 10-14

and represented a broad variety of functional classes. The
parametrization of the function models the noncovalent interac-
tions of organic ligands with proteins, including proteins with
bound metal ions in their active sites. The function is continuous
and piecewise differentiable with respect to ligand pose, which
is important for the gradient-based optimization procedures
employed within Surflex-Dock. The terms, in rough order of
significance, are hydrophobic complementarity, polar comple-
mentarity, entropic, and solvation (negligible). The full scoring
function is the sum of each of these terms.

The dominant terms are the hydrophobic contact term and a
polar contact term that has a directional component and is scaled
by formal charges on the protein and ligand atoms. These
functional terms are parametrized on the basis of distances
between van der Waals surfaces, with negative values indicating
interpenetration. Each atom on the protein and ligand is labeled
as being nonpolar (e.g., the H of a C-H) or polar (e.g., the H
of an N-H or the O of a CdO), and polar atoms are also
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assigned a formal charge, if present. Figure 1 shows plots of
the hydrophobic term and the polar term for a hydrogen bond.
The hydrophobic term (bottom curve in red) yields ap-
proximately 0.1 unit per ideal hydrophobic atom-atom contact.
A perfect hydrogen bond yields about 1.2 units and has a peak
corresponding to 1.97 Å from the center of a donor proton to
the center of an acceptor oxygen (learned entirely on the basis
of the empirical data and corresponding quite closely to the
expected value range). Despite the large difference in the value
of a single hydrophobic contact versus a single polar contact,
the hydrophobic term accounts for alarger total proportion of
ligand binding energy on average. This is because there are
many more hydrophobic contacts than ideal polar contacts in a
typical protein-ligand interaction.

Apart from the hydrophobic and polar terms, the remaining
important terms include the entropic term and the solvation term.
The entropic term includes a penalty that is linear in the number
of rotatable bonds in the ligand, intended to model the entropic
cost of fixation of these bonds, and a term that is linearly related
to the log of the molecular weight of the ligand, intended to
model the loss of translation and rotational entropy of the ligand.
The solvation terms are linearly related to a count of the number
of missed opportunities for appropriate polar contacts at the
protein-ligand interface.

However, neither the solvation term nor any of the terms
intended to guard against improper clashes received much
weight in the original training (the solvation term was, in fact,
0.0). This was due to the fact that no negative data were
employed; only ligands with their cognate proteins were used
in parameter estimation. Thus, there were essentially no data
from which to induce such penalty terms. In particular, the linear
weights on the terms for improper steric clashes, noncomple-
mentary polar contacts, and solvation effects were, respectively,
-0.08 (l1 in the original paper),-0.15 (l5), and 0.0 (l6). All of
these were very small relative to, for example, the magnitude
of a single ideal hydrogen bond (1.23). To make use of the
scoring function for molecular docking, it was necessary to
superimpose a term to prevent atomic overlap between the
protein and the ligand (and within the ligand itself):-10.0(dij

+ δ)(dij + δ). In this term,dij is the distance between atomic
surfaces (negative for surfaces that interpenetrate) andδ was

0.1 for all contacts except those between complementary polar
atoms, whereδ was 0.7. In the reimplementation of the
Hammerhead scoring function for Surflex-Dock, this term was
normalized to a value called “pen” by multiplying by 4.0 and
dividing by the number of atoms in the ligand. A docked ligand
yielded two values: score and pen. The user was required to
choose a cutoff for pen beyond which a ligand was rejected (or
alternatively construct a combination score by weighting the
two terms). The formulation of the term was unsatisfying
because the parameters were chosen in a largely arbitrary fashion
and the requirement for selecting a threshold for interpenetration
made for an extra methodological complexity.

In this work, we sought to address this term in a systematic
fashion by making use of negative training data. However, this
required that the new penetration term be treated in an absolute
sense, both with respect to protein-ligand interactions and with
respect to ligand self-interpenetration. The latter required a
change in the internal computation of self-clashing, eliminating
atom pairs from consideration if they were connected by
nonrotatable bonds. Without this modification, ligands with, for
example, bicyclic ring systems were at a disadvantage relative
to other ligands because of the inherent nominal clashing among
atoms within constrained covalent systems. Earlier versions of
Surflex-Dock used an heuristic method to estimate the best
possible self-penetration for each ligand and normalized the self-
penetration by subtracting this value, but this estimate was not
sufficient for systematic parameter tuning. Also, to obtain the
most reliable final scores for docked ligands, the final gradient-
based ligand pose optimization was enhanced in thoroughness
to ensure convergence of the scoring function. Incomplete
convergence would effectively add noise to the scores of ligands
during scoring function optimization as well as during the
evaluation of the methodology.

Software Versions. Surflex, version 1.24, was in widest
circulation prior to the current work, and was used in data set
generation and for certain control experiments. This version
implemented the original Hammerhead scoring function, as
described above, with the ad hoc interpenetration treatment.
Versions up to 1.28 continued to use this formulation. The
modified scoring function, with the new treatment of penetration
values, more aggressive gradient-based pose optimization, and

Figure 1. Left: hydrophobic and polar terms of the scoring function. The hydrophobic term peaks at approximately 0.1 units with a slight surface
interpenetration. The polar term for an ideal hydrogen bond peaks at 1.25 units. Right: hydrophobic scoring function term plotted with the ah hoc
penetration term. The learned penalties for improper interpenetration were insignificant because of the use of only positive training data. Docking
with this scoring function is carried out by optimization of the score, with the added constraint of the penetration term during gradient-based
refinement of ligand scores.
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a switch to select the original scoring function, begins with
Surflex-Dock versions 1.31 and higher.

Negative Data Sets.Two sources were used for nominal
negative ligands. The screening data set from the comparative
paper of Bissantz et al.16 was used, as in our previous report.19

The original data set included 990 randomly chosen nonreactive
organic molecules chosen from the Available Chemicals Direc-
tory (ACD) ranging from 0 to 41 rotatable bonds. The data set
was used with two modifications. First, all ligands were
subjected to an automatic protonation procedure and energy
minimization in order to eliminate differential bias between
positive and negative ligands (positives were treated the same;
see below). Second, ligands with greater than 15 rotatable bonds
were eliminated, resulting in 861 negative ligands. This
eliminated decoys that were clearly not druglike and better
reflected the composition of the positive ligands.

The second source was ZINC (see http://blaster.docking.org/
zinc). We randomly selected 1000 compounds from the druglike
subset (1 847 466 total) of the 07-26-2004 version of the
database. These compounds had molecular weights ofe500,
with computed logp of e5, h-bond donors ofe5, and h-bond
acceptors ofe10. The compounds were processed identically
to the ligands above, and the number of rotatable bonds in the
set ranged from 0 to 12. In the remainder of the paper, “negative
ligand set” refers to the 861-compound set derived from Bissantz
et al.16 unless otherwise noted specifically as the “ZINC negative
set”.

Training Data Set. Re-estimation of the scoring function
parameters relating to improper interactions requiredboth
positive and negative data; otherwise, the scoring function could
be trivially modified to include very large penalty terms. To
simplify evaluation of the new function, we employed the 34-
complex training set that was used in constructing the original
Hammerhead scoring function.2 All of the complexes dated from
1992 or earlier, reducing the possibility that the training set could
contain information relevant to our tests, which were based
largely on more recent data. The original complexes were
converted from PDB to Sybyl mol2 format and protonated per
expectation at physiological pH, with active site rotamers of
hydroxyls and thiols and tautomers of imidazoles optimized for
cognate ligand interactions.

For the negative data, we employed the negative ligand set
above (restricted, for computational efficiency, to the 600 least
flexible molecules). For each of the protein structures of the
34-complex positive data set, we docked all negative ligands
using Surflex-Dock, version 1.24, using default parameters.
Ligands that scored greater than 4.0 (in units of pKd, ignoring
penetration values) were presumed to be false positives. The
value 4.0 was chosen because in our experience aKd or Ki of
100 µM is at the limit of what is generally considered to be a
specific ligand of a protein. We believed that it was quite likely
that ligands with nominal scores greater than 4.0 pKd from our
small random library were false hits, based on the expectation
that true hit proportions in a typical library are roughly1/1000 to
1/10000. Note, however, that several of the positive ligands have
pKd less than 4.0, so there are clearly examples of weak ligands
that specifically bind proteins with quite weak affinities. To
reduce the likelihood of including a true ligand as a negative in
the training set, we further screened the ligands based on
molecular similarity to the bound pose of the native ligand for
each protein using Surflex-Sim.26 Those ligands that scored
worse than 0.5 on a scale from 0 to 1 were retained as negatives
for the purpose of parameter estimation. Table 1 lists the PDB
codes, true ligands, and number of negative ligands for each

protein in the training data set. The total number of negative
ligands was 2274, with 34 positive ligand examples.

Test Data Sets.Four sources were used to generate 29 test
cases for screening utility (see Figure 2). The two data sets from
the comparative paper of Bissantz et al.16 were used, as in our
previous report.19 The original data sets included protein
structures for HSV-1 thymidine kinase (TK, PDB code 1KIM)
and estrogen receptorR (ERR, PDB code 3ERT): 10 known
ligands of TK in arbitrary initial poses and 10 known ligands
of ERR in arbitrary initial poses. The data sets were used with
the modification (as above) that ligands were subjected to an
automatic protonation procedure and energy minimization in
order to eliminate differential bias between positive and negative
ligands.

One limitation of the foregoing two cases is that the ligands
either are drugs or are druglike in their potency and physico-
chemical properties. Therefore, they are likely to form “easy”
cases for docking tools. To address this issue, we took molecular
structures from two papers that reported the results of combina-
tions of both virtual screening and high-throughput screening
to form two new cases where the true positives were reflective
of the type of hits that can be found in library-based screening.
The protein PARP (poly(ADP-ribose) polymerase), PDB code
2PAX, along with 15 true ligands formed one case, based on
Perkins et al.27 The protein PTP1b (protein tyrosine phosphatase
1b), PDB code 1PTY, along with 11 true ligands formed the
second, based on Doman et al.28

We used the PDBbind database25 to generate a large number
of additional cases for testing screening utility. From the full
800-complex set, we identified all proteins that were represented

Table 1. Training Data Set

complex ligand N negative pKd

7cpa ZFVp(O)F 78 14
1stp biotin 46 13.4
6cpa A-ZAAp(O)F 115 11.52
4tmn ZFpLA 72 10.19
4dfr methotrexate 115 9.7
4phv L700,417 207 9.15
1dwd NAPAP 92 8.52
5tmn ZGpLL 100 8.04
2gbp galactose 1 7.6
1etr MQPA 66 7.4
1tlp phosphoramidon 87 7.33
1tmn CLT 78 7.3
1rbp retinol 115 6.72
1ppc NAPAP 27 6.46
5tln HONH-BAGN 96 6.37
1pph 3-TAPAP 34 6.22
1ett TAPAP 121 6.19
1phf 4-Phe-imidazole 141 6.07
4dfr* 2,4-diaminopteridine 6
5cpp adamantone 3 5.88
2xis xylose 0 5.82
2ifb C15COOH 173 5.43
1ulb guanine 67 5.3
2ypi phoshoglycilic acid 45 4.82
3ptb benzamidine 28 4.74
2phh p-hydroxybenzoate 58 4.68
2tmn PLN 101 4.67
3ptb* phenylguanidine 4.14
1dwd* amidinopiperidine 3.82
4tln Leu-NHOH 98 3.72
3ptb* benzylamine 3.42
4cha indole 0 3.1
1dwb benzamidine 110 2.92
3ptba butylamine 2.82

a Indicates that the respective ligand was docked in or generated by a
direct modification of the native ligand in the complex.
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Figure 2. Example structures for the 29 screening enrichment test cases. The first row contains the ER and TK test cases from previous work as
well as two new cases consisting of true ligands that were found through combinations of virtual and high-throughput screening. The remaining 25
cases come from the PDBbind database.25
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by at least five different ligands. For each of these proteins, we
arbitrarily selected one of the PDB structures to serve as the
screening target, and we generated a Sybyl mol2 format protein
(prepared as above for the positive training data). The cognate
ligands of the proteins were subjected to the same automatic
protonation and minimization above. In cases where more than
20 ligands existed for a protein, we selected the 20 most diverse,
based on molecular similarity, in an procedure analogous to the
IcePick method.29 The overall procedure yielded 25 proteins,
with a total of 226 ligands. We believe that this represents the
largest set of screening test cases currently available. As shown
in Figure 2, the functional diversity of proteins and the structural
diversity of ligands were large. The set included four serine
proteases (row 3 of the figure), kinases, phosphatases, isomeras-
es, aspartyl proteases, metalloproteases, and a number of other
protein types. Importantly, the range of ligand binding affinities
was large, with a substantial number of lower affinity ligands.
Half of the ligands had pKd less than 6.0 (micromolar or worse
Ki or Kd), with just one-fifth having pKd greater than 9.0
(subnanomolar or better).

Optimization Procedure. To demonstrate the feasibility of
the approach of using negative data, we chose to optimize two
parameters: the weight of the term for noncomplementary (same
charge) polar contacts and the weight of the term for protein-
ligand and ligand-ligand clashes. The former term was
parametrized exactly as in the original scoring function, and it
will be referred to in what follows as sf_pr (Surflex polar
repulsion). Owing to the relative success of our ad hoc approach
to modeling interpenetration, employing the “pen” value, we
chose to add a new term to the scoring function by including
an analogous quadratic penalty. However, rather than scaling
the term by the number of ligand atoms, which has no theoretical
basis, we added the following new term to the original scoring
function: sf_hrd(dij + δ)(dij + δ), with variables defined as
above. This formulation can be thought of in terms of another
additive energy term. The parameters sf_hrd (Surflex hard
penetration) and sf_pr, when optimized, would be expected to
be both significant and negative.

In the search for an optimum parametrization, given some
objective function, there is a complexity that is somewhat unique
to docking and shared with 3D QSAR. Because the function
being optimized changes, the optimal poses for the ligands
within the training set change as well. As in our previous
work,2,30-32 we addressed this problem by interleaving parameter
optimization with ligand pose optimization. In this approach,
each time a ligand is optimized, the resulting pose is added to
the pose cachefor that ligand. In the inner loop of evaluation
of ligand scores for computing the overall objective function,
all cached ligand poses are evaluated, with the highest scoring
one defining the score for the ligand. For this work, it was
sufficient to retain only the highest scoring pose on each iteration
(essentially a pose cache size of 1).

Our objective function was a straightforward generalization
of the common mean squared error function. For positive
ligands, their contribution was the square of the difference
between their maximal score under pose optimization and their
experimentally determined score (in units of pKd). For negative
ligands, if their score was greater than 4.0, their contribution to
the error function was the same as for positive ligands (squared
difference), but if their score was 4.0 or less, their contribution
was zero. So any deviation from the correct score for a positive
ligand induced a corrective pressure during optimization, but
only in the case of inappropriately high scores would negative
ligands contribute to the error function. Note that while the

cutoff for producing pressure was 4.0 (which exceeds the scores
of some of the known positives), the procedure allowed for many
of the scores of the synthetic negatives to become much less
than 4.0. The last complexity was that there were about 2 orders
of magnitude more negative examples than positive examples.
So a simple optimization of the total error would have vastly
overweighted the contribution of the negative ligands. We
balanced the relative contributions of the negative ligands and
positive ligands to be equal in order to avoid this.

Since there were only two parameters to optimize, we used
a simple approach that combined broad sampling with bounded
random search with a fine-grained line search and small random
parameter perturbation. In principle, since the error function and
the scoring function are continuous and differentiable, more
complex approaches could have been employed, but they were
not necessary. A single stable solution that minimized error was
reached with sf_pr) -2.52 and sf_hrd) -0.945.

Computational Assessment.The old and new scoring
functions of Surflex-Dock were evaluated for screening utility
using our large set of 29 cases and for docking accuracy using
our previous 81-complex data set.19 We used Surflex-Dock,
version 1.24, to generate protomols in all cases, using standard
parameters. In computing scores for comparison between the
old version (which returns values of both score and pen) and
the new version (which returns only a score), we avoided the
use of arbitrary thresholds by simply adding the score and pen
values of the old scoring function to yield a single scalar
combination score. This approximates the newer functional
treatment and provides an apples-to-apples comparison.

To differentiate effects of the new scoring function from the
treatment of ligand self-penetration and ligand pose optimization,
we conducted two separate comparisons. To test the effects of
the new scoring function, we compared performance of Surflex-
Dock, version 1.31, with and without specifying the-old_score
parameter, which selects the old scoring function (but does not
change any other behavior). These effects are the primary focus
of the paper and are reported in detail in the Results and
Discussion.

We conducted a separate comparison between the older
version of Surflex-Dock (version 1.24) and the current version
using the old scoring function (version 1.31-old_score) in order
to assess the effects of the changes in the ligand self-penetration
computation and ligand pose optimization. In making compari-
sons of different methods from the perspective of screening
utility, we employed receiver-operating-characteristic (ROC)
plots. Figure 3 shows ROC plots for the ER and TK test cases
using the old approach and new approach. For a given ranking
of the ligands using a particular docking procedure, we
computed the true positive and false positive rates ateVery
possible score threshold, with the resulting pairs of values
yielding the ROC plot (true positive rates on they axis and
false positive rates on thex axis). The ideal ROC curve goes
from (0,0) to (0,1) to (1,1), reflecting a 100% true positive rate
at a false positive rate of 0%. This occurs when the scores of
all cognate ligands are larger than the scores of all random
ligands. ROC curves resulting from different scoring functions
can be quantitatively compared by computing the area under
the curve, with the perfect ROC curve yielding an area of 1.
While the ER case showed no real difference (ROC areas of
0.993 and 0.992), the TK case showed better enrichment for
the older Surflex-Dock version.

The right-hand plot of Figure 3 illustrates the reason. While
the scoring function is identical between the two versions, the
distribution of negative ligand scores using the more aggressive

NegatiVe Training Data for Scoring Journal of Medicinal Chemistry, 2006, Vol. 49, No. 205861



pose optimization procedure of the new version is shifted to
the right of the old version. Recall that Surflex yields scored in
units of pKd, so more aggressive optimization results inhigher
scores. This reduces the separation between the positive and
negative ligands (the positive ligand distribution does not change
significantly). Despite poorer performance in this case, if we
considered the ROC areas of the old and new versions in all 29
screening examples, we observed significantly improved per-
formance using the new version (p < 0.05 by t-test). This is
expected, given that frequently nonconvergent pose optimization
would simply add a degree of noise to ligand scores. In what
follows, the only difference between versions is use of the
-old_score switch within version 1.31 of the Surflex-Dock
software.

Results and Discussion

We focused our attention on the results attributable to the
differences between the old and new scoring functions, which
lay in the effects of inappropriate atomic interpenetration and
noncomplementary polar contacts. Figure 4 shows the cumula-
tive histograms of the scores for the negative ligands used in
training the new scoring function. The original scores (ignoring
the penetration term) were the rightmost curve, with nearly all
ligands scoring greater than 4.0 (not all ligands scored greater
than 4.0 because of minor changes in protein preparation
between negative data set generation and final evaluation). The
scores corresponding to the new function are represented by
the leftmost curve. Note that following parameter optimization,
approximately 70% of the negative ligands scoredlessthan 4.0.
It was not possible, using just the two parameters that were
optimized, to simultaneously eliminate all 100% of the nominal
false positives while retaining accurate scores for the positive
examples. The middle curve is the cumulative histogram of the
sumof the score and pen values for the old scoring function.
While this curve was closer to that of the new function, the
penalties that were learned through systematic optimization in
the presence of negative training data yielded uniformly lower
scores.

Figure 5 (left) shows a plot of the old and new hydrophobic
terms, which reflects the negative contribution of the quadratic
interpenetration penalty with its linear weight of-0.945
(sf_hrd). While this term is much more stringent than the

sigmoidal component of the original function (with a maximal
penalty of 0.08 log units), it is less stiff than a standard 6-12
potential. Figure 5 (right) shows the fit to the 34 positive ligand
scores, with a mean error of 1.1 log units, which is quite
comparable to the original report of the scoring function as
parametrized solely on positive data. So without significantly
affecting the scores of known ligands, we were able to make
an impact on the scores of the synthetically generated negative
ligands.

Assessment of New Scoring Function in Screening Enrich-
ment. The ER and TK cases, which have been the subject of
numerous reports,13,16,18,19deserve special attention. Figure 6
shows the full ROC curves and underlying cumulative histo-
grams of positive and negative ligand scores for the TK and
ER test cases. Performance was excellent in both cases with
both scoring functions, with all ROC areas exceeding 0.9.
Maximal enrichment (ratio of true ligands found to expected
number of hits at all percentages of database screening) occurred

Figure 3. Left: ROC curves for the thymidine kinase and estrogen receptor screening examples using the original (Surflex, version 1.24) and new
(Surflex, version 1.31) treatment of self-penetration and final ligand optimization. Right: cumulative histograms of the combined scores (score+
penetration) of nonligands in the TK case. The differences are small, but the rightward shift of the scores in the new optimization procedure results
in a decrease in separation between the true and false ligands for TK.

Figure 4. Cumulative histograms of ligand scores before and after
scoring function modification. The rightmost curve depicts the scores
of nominal false positives for all protein structures used in training.
The middle curve includes the penetration values for those ligands.
The left curve shows the scores of the ligands using the modified scoring
function.
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Figure 6. Top plots: ROC curves for the TK and ER cases with old and new scoring functions. In the TK case, the new scoring function performs
better in terms of ROC area. In the ER case, performance at the original level was attainable by ignoring interpenetrations up to a value of-8.0.
Bottom plots: cumulative histograms of positive and negative ligand scores for TK and ER. While the change to the scoring function involved
increases in weight to negative terms, the changes in scores that gave rise to changes in positive/negative separation were varied. In the TK case,
a rightward shift of positive ligand scores was responsible. In the ER case, a leftward shift in positive ligand scores hurt performance.

Figure 5. Left: original and modified hydrophobic scoring function term. Right: plot of computed and actual pKd for the 34 positive training
cases after parameter modification. The new interpenetration penalty is much more severe than had been learned from solely positive data, but the
effect on the computed scores compared was small.
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at very low false positive rates for both scoring functions and
exceeded 20-fold for TK and 500-fold for ER. Since ROC areas
are much more stable to small changes in the scores of true
and false ligands than maximal enrichment values, we will focus
the quantitative comparisons between the scoring functions on
ROC areas in what follows.

In the TK case, the new function leads to a reduction in the
false positive rates at true positive rates of 70% and higher. In
the ER case, the opposite is true. The bottom plots in Figure 6
show the cumulative histograms of positive and negative ligand
scores for both cases. Surprisingly, while there were differences
in the distribution of negative scores in both cases between the
different scoring functions, the differences that drove the
discrepancies in ROC curves were the result of changes in the
positiVe ligand scores. In the ER case, some of the large positive
ligands were penalized by the new scoring function’s harsher
treatment of interpenetration. While this is not desirable, it is
an expected effect in some cases. In cases such as this, where
very large ligands are desired, it is possible, as before, to treat
the interpenetration portion of the score heuristically. By
allowing all docked ligands a degree of penetration with no
penalty, we observed performance equivalent to that of the old
version (blue curve in Figure 6).

In the TK case, we saw an unexpected effect. The lowest
scoring of the true positives scoredhigherusing the new scoring
function than with the old. This is surprising because the new
function has harsher penalties for inappropriate contacts.
However, since the scoring function of Surflex-Dock is used
deep in the search process, we observed different solutions to
the docking problem using the different functions. Figure 7
shows an example of this effect using the dockings observed
for a single positive ligand of thymidine kinase. The solution
using the new scoring function is depicted in atom color, and
the solution using the old scoring function is depicted using
green carbons. In the case of the old scoring function, very little
weight was given to noncomplementary polar contacts, and in
the pose shown, there were three very close contacts between

pairs of atoms with charges of the same sign. With the new
scoring function, this pose scores more than 6.0 log units worse
than with the old scoring function, owing to the large negative
weight given to the sf_pr term. The pose returned by the new
scoring function avoids all of the improper contacts while
retaining as many appropriate contacts. While both poses were
very close to the experimentally determined pose (<1.5 Å rmsd),
the pose returned by employing the new scoring function was
clearly superior.

Since these two cases have been used in a number of other
studies, it is possible to make direct comparisons among
different methods. Table 2 shows the true positive rates reported
by Kellenberger et al.18 for thymidine kinase for eight docking
methods, amended to include the Surflex result with the new
scoring function. As evidenced by the plots in Figure 6, the
Surflex results did not change much, with a slight improvement
at the 2.5% level of false positives. Note, however, that the
new results didnot require the choice of a threshold penetration
value, which was required in the previous studies. Table 3 shows
enrichment factors reported by Halgren et al.13 amended to
include the Surflex result with the new scoring function, again
without any special treatment of protein interpenetration. In both
the TK and ER cases, the Surflex enrichment factors were
substantially better than the other methods.

While these results are encouraging, they represent a limited
test, given just 2 proteins and 20 positive ligands, all of which
are either drugs or druglike in potency and physicochemical
properties. Figure 8 shows ROC curves and score histograms
for PARP and PTP. In these cases, the positive ligands were
discovered through combinations of virtual and high-throughput
screening. They were all of relatively poor potency and reflect
the makeup of common screening libraries. In both cases, the
new scoring function improved performance, though it did so
on the basis of different effects. In the case of PARP, the slight
leftward shift in the distribution of negative ligand scores (lower-
left plot, upper part of red curve) was responsible for the
difference observed in the ROC curves. In the case of PTP, as
with TK above, the effect was a substantial right shift of positive
ligand scores. Again, it appears that the new scoring function
guided the docking search algorithm more effectively to better
solutions.

Table 4 summarizes Surflex-Dock screening performance on
all 29 cases tested (ligand examples shown in Figure 2) for the
old and new scoring functions, using ROC areas to characterize
the separation of positive and negative ligand sets. Differences
of less than 0.005 are considered negligible. The 29 cases
included a diverse set of 226 ligands, with a large number having
poor binding affinities (half with micromolar or worseKd or

Figure 7. Thymidine kinase ligand 5-iodouracil anhydrohexitol
nucleoside (AHIU) docked using the old scoring function (green
carbons) and new scoring function (gray carbons). The old pose scored
with the new scoring function scores more than 6 log units worse with
the new scoring function because of multiple same-charge atomic
interactions (indicated by green lines). The new scoring function guided
the docking to a pose with a better score and better geometric
relationship to the protein, in particular to GLN125, though both poses
are accurate by rmsd (<1.5 Å).

Table 2. Comparative True Positive Rates in Screening for Thymidine
Kinasea

FP,
% DOCK FlexX Fred Glide GOLD QXP Slide Surflex

Surflex,
new

2.5 0.0 20.0 0.0 20.0 10.0 0.0 0.0 40.0 60.0
5.0 10.0 40.0 0.0 50.0 40.0 20.0 0.0 80.0 80.0

a Values are percentage of true positive rates for fixed false positive rates.
All data but the last column are taken from Kellenberger et al.18

Table 3. Enrichment Factors Compared with Other Docking Programs
(Large Values Are Good)a

DOCK FlexX Glide GOLD Surflex-New

thymidine kinase 3.0 11.1 19.3 8.2 37.9
estrogen receptor 6.7 8.9 47.1 28.5 90.7

a Values are EF′(70), as defined in Halgren et al.13 All data but the last
column are taken from Halgren et al.13
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Ki). Overall, the new scoring function performed as well as or
better than the old scoring function in21/29 cases, so it is clearly
not worse than the old function (p ) 0.01 by exact binomial).
The converse is not true. That is, the old scoring function
performs as well as or better than the new one in15/29 cases,
which allows the possibility that the old scoring function is
worse. However, the number of test cases is too small to make
a strong statement that the new approach is significantly better
in terms of the proportion of cases where the ROC area is clearly
improved. With the new scoring function, maximal enrichment
of true ligands over nonligands exceeded 20-fold in over 80%
of cases, with enrichment of greater than 100-fold in over 50%
of cases. Given that many of these cases were clearly much
more difficult, based on ligand affinities, than the widely used
TK and ER cases, performance on par with those two examples
in themajorityof cases suggests that Surflex-Dock should yield
strong performance in terms of screening utility in a wide variety
of cases.

We further tested the performance of the system using an
entirely new negative screening set of ligands, derived from
the ZINC database. This was done because it was theoretically
possible that the scoring function optimization procedure could
have “learned” something specific about properties of the
negative set derived from the Rognan benchmarks, which was
used to produce the putative negative examples for the training

set. However, the ROC areas derived using the ZINC negative
set with the new scoring function were statistically indistin-
guishable from those presented above. In fact, the ROC area
differences between the scoring functions using the ZINC versus
Rognan negative sets were almost perfectly correlated, with a
Pearsonr2 of 0.987.

Effects of Protein Conformation. In the six cases with
poorest performance of the new scoring function, the old scoring
function performed better only in two (1bxo and 1qhc),
reflecting the possibility that these six cases may be difficult
proteins in some intrinsic sense. Another possibility is that the
particular conformations of the protein structures used for
screening were not propitious. We arbitrarily selected different
protein structures for each of these six cases and retested the
performance of Surflex-Dock’s new scoring function. Table 5
shows the results from the original structures, from the new
structures, and from combining both screens by taking the
maximal ligand score from both structures in each case. In3/6
cases, the new structures yielded much improved performance,
suggesting that these cases may have been outliers. These
included the two cases in which the old scoring function had
outperformed the new one. In the remaining cases, there was
no significant change for one (1f4g) but reduced performance
for two (1fmo and 2amv). Clearly, protein conformation can
have unpredictable effects. However, it appears that the simple

Figure 8. Top plots: ROC curves for the PARP and PTP test cases with old and new scoring functions. Bottom plots: cumulative histograms of
positive and negative ligand scores for PARP and PTP.
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approach of using multiple structures and reporting the maxi-
mum score of each ligand might be an appropriate safe strategy.
In 6/6 cases, this approach performed better than the worst of
the single-protein runs (p ) 0.02 by exact binomial), and in3/6
cases this approach performed better than either single structure
alone. These results stand in some contrast to the interesting,
but counterintuitive, result reported by Wei et al.33 where they
observedworseperformance using this approach unless they
corrected for cavitation energies in different protein structures.

Solvation Effects. The protein for which Surflex-Dock
yielded the poorest performance was glycogen phosphorylase
(2amv), and performance was not improved using multiple
conformations. The active site of this protein is quite hydro-
philic, with 20 protein atoms capable of making polar interac-
tions with a ligand in the binding pocket. Figure 9 shows a
positive ligand (green) and a nonligand (atom color) in the active
site of the protein. The known ligand makes a network of polar
interactions with three guanidine moieties. However, the non-
ligand makes no successful polar interactions in the binding
site at all, while still scoring 5.0 pKd. Further, the ligand
effectively buries multiple polar atoms of the protein, rendering
them inaccessible even to solvent. The scoring function, even
in its new form, does not account for the cost of desolvating
the protein (important in this case) or the ligand.

We approximated this intention in this case by requiring that
the ligands of glycogen phosphorylase received a polar score

of at least 3.0 in either of the two structures. If so, we recorded
the maximum score of the ligand, else we recorded a zero.
Employing this simple heuristic, we saw an improvement from
0.684 to 0.862 in ROC area. While this is an ad hoc procedure,
it motivates the development of an effective strategy for
modeling desolvation costs. Such a strategy should include some
computation of the degree of buriedness of each polar atom
(i.e., the degree to which it is inaccessible to solvent in the
docked state), the solvated polar score of the protein and ligand,
and the degree to which complementary polar contacts between
the protein and ligand ameliorate loss of interactions with solvent
molecules. A sufficiently refined treatment will require several
parameters and will benefit from additional positive training
data in addition to the negative data that have been the subject
of this paper.

Docking Accuracy and Speed.We evaluated docking
accuracy on the same data set used previously, consisting of
81 protein-ligand complexes.19 Docking accuracy was not
significantly different between the old and new scoring func-
tions, with58/81 complexes (72%) in both cases having rmsd of
top-ranked poses within 2.0 Å of crystallographic observation
using either scoring function.

Docking speed was not significantly affected by any of the
changes from the previous reported version to the modified
algorithm reported here. On standard workstation hardware (Intel
Xeon 2.80 GHz, 1 GB RAM, Windows XP Professional,
Surflex-Dock version 1.31 with default options), the mean
docking time over the 81 complexes was 17 s, with ligand
flexibility ranging from 0 to 15 rotatable bonds. Docking time
was roughly linear in the number of rotatable bonds, with a

Table 4. Comparison of ROC Area Scores for 29 Cases with New and
Old Scoring Functions

name Nmols new score old score difference

ER 10 0.922 0.993 -0.071
TK 10 0.963 0.948 0.016
PARP 15 0.846 0.829 0.017
PTP 11 0.831 0.792 0.039
2XIS 5 0.958 0.923 0.035
1FMO 8 0.764 0.722 0.041
1AJQ 6 0.922 0.897 0.025
3STD 5 0.844 0.814 0.030
7TIM 6 0.966 0.935 0.031
1QBO 20 0.990 0.978 0.011
1C4V 20 0.876 0.900 -0.023
1GJ7 12 0.953 0.948 0.005
1FJS 6 0.980 0.974 0.007
1E66 6 0.764 0.767 -0.003
1EIX 5 0.996 0.995 0.002
1BZH 12 0.917 0.916 0.002
1FH8 6 0.997 0.995 0.002
1BXO 5 0.746 0.985 -0.239
1QHC 6 0.791 0.886 -0.095
1RNT 5 0.952 0.966 -0.015
2QWG 7 0.965 0.987 -0.022
1F4G 10 0.693 0.594 0.098
1PRO 20 0.862 0.955 -0.093
7CPA 8 0.901 0.916 -0.015
3PCJ 8 0.948 0.952 -0.003
2AMV 5 0.709 0.693 0.017
4TMN 13 0.828 0.810 0.018
1B5J 16 1.000 1.000 0.000
1B7H 6 0.999 1.000 -0.001

Table 5. Effects of Protein Conformation on Screening Enrichment

protein original structure new structure

name N PDB ROC area PDB ROC area
combination
ROC area

penicillopepsin 5 1bxo 0.746 1apw 0.941 0.946
pancreatic ribonuclease 6 1qhc 0.791 1afk 0.915 0.957
acetylcholinesterase 6 1e66 0.764 1gpn 0.914 0.847
thymidylate synthase 10 1f4g 0.693 1tsl 0.700 0.707
cAMP dep protein kinase 8 1fmo 0.764 1stc 0.665 0.730
glycogen phosphorylase 5 2amv 0.709 3amv 0.590 0.684

Figure 9. Native ligand (green) and docked false positive (atom color)
in 2amv (blue). Three guanidines on the protein make multiple favorable
polar contacts with the true ligand. The false positive makes no
complementary polar contacts and buries the guanidine moieties with
an aromatic ring.
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mean of 3.0 s (standard deviation of 1.54) required for a single
docking per rotatable bond. Note that this is approximately 10-
fold faster than the report from Kellenberger et al., which relied
on older SGI hardware and for which much less efficient
compiler optimization strategies were employed.

Conclusions
Our results clearly demonstrate that synthetically generated

negative data can be used effectively in estimating parameters
for scoring functions in molecular docking. Over a large variety
of test cases, both with respect to screening utility and docking
accuracy, the newly parametrized scoring function performed
at least as well as the old scoring function, which relied on a
less systematic, hand-tuned approach for addressing repulsive
interactions.

Apart from pure performance issues, the new approach is
clearly an improvement methodologically in three respects. First,
the new scoring function reformulates the formerly ad hoc
penetration term (which included a dependence on ligand size)
into one with a theoretically more satisfying form that can be
thought of as another additive energetic effect. Second, in an
operational sense, the new function returns asinglevalue, which
has direct interpretation in ranking ligands. While heuristic
methods may be layered on top of a straightforward score-based
ranking, none are required. Third, both the penetration term and
the term related to noncomplementary polar contacts received
significant weight in the retuned function, which comports with
both intuition and theory.

By incorporating negative training data, we have been able
to address two of the key challenges we set out in the original
Surflex report:19 consolidation of scoring and penetration terms
and inclusion of negative training data. There is still much room
for improvement. On the basis of the preliminary results here
regarding treatment of desolvation effects, development of a
term that treats both protein and ligand desolvation sym-
metrically, while taking into account issues of solvent exposure,
is a high priority. This will benefit from a larger training set of
positive examples, which could be greatly increased by leverag-
ing efforts such as PDBbind.25

The benchmark data set established in this work is publicly
available and offers a large number of diverse cases for testing
screening performance of docking methods. Surflex-Dock,
version 1.31, incorporating the new scoring function, performed
extremely well in13/29 cases, with ROC areas of 0.95 or greater,
performed very well in 10 additional cases (ROC area greater
than 0.80), and showed weaker performance in the remaining
6 cases. In those cases, a simple approach that made use of two
protein conformations was remarkably successful in improving
performance. It is our hope that other methodological researchers
in the field of molecular docking will make use of (and add to)
this benchmark data set.
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